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Abstract. We list the set of C and P conserving anomalous quartic vector bosons self-couplings which
can be tested at LEP2 through triple vector boson production. We show how this set can be embedded in
manifestly SU(2)×U(1) gauge invariant operators exhibiting an SU(2)c global symmetry. We derive bounds
on these various couplings and show the most relevant distributions that can enhance their contribution.
We also find that an e+e− collider running at 500 GeV can improve the LEP2 limits by as much as
three-orders of magnitude.

1 Photonic quartic couplings

LEP has now crossed the threshold for Z pair production
and therefore experiments can now study triple boson pro-
duction like e+e− → W+W−γ, ZZγ, beside e+e− →
γγγ, γγZ which may be studied at lower energies. These
processes have the potential to study new quartic photonic
couplings, photonic in the sense that at least one of the
vector bosons is a photon. One should refer to these quar-
tic couplings as genuine quartic couplings [1–3] contrary
to quartic couplings that may emerge from an operator
that induces for instance both a tri-linear WWγ coupling
as well as a possible WWγγ, as required by gauge invari-
ance. The latter (non-genuine) couplings can therefore be
investigated much more efficiently through their tri-linear
counterpart in, for instance, e+e− → W+W−. An ex-
ample of such a coupling is the much studied operator
described by λγ in the by now standard classification [4] ,
λγ is sometimes referred to as the anomalous quadrupole
moment of the W . From this perspective genuine quar-
tic couplings can only be studied in triple vector boson
production or through boson-boson fusion, the latter be-
coming a more efficient means at TeV energies [3].

Let us note that quartic neutral couplings, γγγγ,
Zγγγ, contributing to e+e− → 3γ have already been
studied in [2] and could be explored for energies below
those presently available. Since these quartic couplings in-
volve at least three photons, electromagnetic gauge invari-
ance alone allows these couplings only if they emerge from
dimension-eight (or higher) operators. On the other hand,
anomalous couplings such as WWγγ or WWZγ that con-
tribute to e+e− → W+W−γ may be associated to dim-6
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operators and are hence a more likely signal of a possi-
ble residual effects of New Physics. As a matter of fact
WWγγ and WWZγ are present in the SM at tree-level
and as a consequence these types of couplings are more im-
portant to study. The WWγγ quartic photonic couplings
were first introduced in [1] in view of studying their effects
on γγ → W+W− in the laser mode of the Linear Col-
lider. They were derived by only appealing to electromag-
netic gauge invariance and SU(2)c custodial symmetry.
The phenomenology of these couplings has since then been
studied in the next linear collider both in the e+e− [3,5],
γγ [1] and eγ [6] modes. Very recently these couplings have
been re-investigated for LEP2 energies [7]. Unfortunately,
as we will show, when studying the effect of genuine quar-
tic couplings in e+e− → W+W−γ and e+e− → Zγγ, one
needs to consider a larger set of structures than the two
that have been written down for γγ → W+W− . The aim
of this paper is to generalize the study we performed in
[1,3] and to review and clarify some of the issues related
to the photonic quartic couplings.

The plan of the paper is as follows. In the next section,
we start by listing the leading quartic operators that con-
tribute to e+e− → W+W−γ (and Zγγ). In writing down
this list we will only appeal to explicit U(1)em gauge in-
variance as well as C and P conservation. In a sense these
structures constitute the quartic counterpart to the tri-
linear classification in [4]. In passing we will point out
that a third “photonic” quartic coupling that has been
entertained [6,7] in the literature does in fact violate CP .
We will then show how the different structures can be
embedded within SU(2) × U(1) operators which we re-
quire also to exhibit the SU(2)c global custodial symmetry
which leads to ρ = 1 in the limit of vanishing hypercharge
coupling. This can be done either in the usual approach
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by exploiting the covariant derivative on the Goldstone-
Higgs field (for notations and conventions refer to [8,9])
or in the non-linear chiral approach of symmetry break-
ing (see [8,10]). The explicitly SU(2) × U(1) approach
together with the SU(2) global symmetry will allow to re-
late some WWγγ and ZZγγ structures, for example. In
Sect. 3 we turn to the analysis of these quartic couplings in
e+e− → W+W−γ and e+e− → Zγγ. We will derive the
limits one may hope to extract and show the distributions
which are most sensitive to these couplings. The case of
the CP violating operator is relegated to an Appendix.

2 Structures which contribute
to e+e− → W +W −γ , Zγγ and ZZγ

For LEP2, the processes of interest, and the lowest-
dimension anomalous quartic couplings they are sensitive
to, are

– e+e− → W+W−γ −→ quartic : WWγγ, WWZγ
– e+e− → Zγγ −→ quartic ZZγγ
– e+e− → ZZγ −→ quartic ZZZγ, ZZγγ

Due to phase space the latter process is marginal at
LEP2. Note that for Zγγ production only one coupling
is checked, ZZγγ, if one restricts oneself to the lowest
dimension operators, otherwise a Z3γ which is of highest
dimension may also contribute. Already at LEP2, one may
also exploit e+e− → νν̄γγ as a testing ground for the
quartic coupling WWγγ, as suggested in [7,11].

We start by listing all those genuine quartic bosonic
operators that contribute to the latter processes and which
are of lowest possible dimension, as it turns out, dim-6.
We first only require electromagnetic gauge invariance to-
gether with C and P symmetry. At this stage the WWγγ,
WWZγ or ZZγγ couplings, for example, are not related.
Each photon requires the use of the electromagnetic ten-
sor Fµν = ∂µAν − ∂νAµ. As we have shown elsewhere
[1], there can be only two basic Lorentz structures for the
lowest dimension WWγγ operators. These map into the
parameters a0 and ac first introduced in [1,3]. Hence the
two WWγγ Lorentz structures are:

Wγ
0 = −e2g2

2Λ2 FµνFµνW+αW−
α

Wγ
c = −e2g2

4Λ2 FµνFµα
(
W+νW−

α + W−νW+
α

)
(2.1)

where e is the electromagnetic coupling, g = e/ sin θW =
e/sW and Λ a mass scale characterizing the New Physics.

For W+W−Zγ, it is also easy to see that one can
have a maximum of 5 independent structures. With gZ =
e/sW cW and Vµν = ∂µVν − ∂νVµ where V = W±, Z, we
have

WZ
0 = −e2g2

Λ2 FµνZµνW+αW−
α

WZ
c = −e2g2

2Λ2 FµνZµα
(
W+νW−

α + W−νW+
α

)

WZ
1 = −egZg2

2Λ2 Fµν
(
W+

µνW−
α Zα + W−

µνW+
α Zα

)

WZ
2 = −egZg2

2Λ2 Fµν
(
W+

µαW−αZν + W−
µαW+αZν

)

WZ
3 = −egZg2

2Λ2 Fµν
(
W+

µαW−
ν Zα + W−

µαW+
ν Zα

)
(2.2)

Note that instead of the use of the field tensor, Vµν ,
for one of the massive vector boson in (2.2), we could
have used instead a simple derivative, ∂µVν . However it
is easy to show that using the derivative only maps into
one/or a combination of the above 7 operators, if one re-
quires the photon from (2.2) to be on-shell like in the
process of interest, e+e− → W+W−γ . Therefore, all in
all, there are 7 C and P conserving Lorentz structures
which at leading order contribute to e+e− → W+W−γ .
Note that at high enough energy one may differentiate,
in e+e− → W+W−γ , between the quartic couplings of
type W0,c and those of the type WZ

1,2,3 if one is able to
reconstruct the final polarisation of the W ’s. Indeed both
W ’s in the former are preferentially longitudinal whereas
in the latter, one is transverse and the other longitudinal,
this is because in the latter the operators involve at least
a field strength to describe a W .

It is straightforward to “convert” the above operators
to genuine quartic couplings for ZZγγ and ZZZγ which
contribute to e+e− → Zγγ and e+e− → ZZγ. One
counts two independent operators for ZZγγ

Zγ
0 = −e2g2

Z

4Λ2 FµνFµνZαZα

Zγ
c = −e2g2

Z

4Λ2 FµνFµαZνZα (2.3)

and two for ZZZγ

ZZ
0 = −e2g2

Z

2Λ2 FµνZµνZαZα

ZZ
c = −e2g2

Z

2Λ2 FµνZµαZνZα (2.4)

2.1 Feynman rules

The Feynman rules for the above operators are easy to
derive. It is worth noticing that all the above operators
can be expressed in terms of very few Lorentz structures.
We define

P0(A(k1, µ);N(k2, ν);Vα ;Vβ)

=
ie2g2

Λ2 2 gαβ(gµνk1.k2 − k1νk2µ) (2.5)

ki stand for the momentum of the particle and {µ ν α β}
are the Lorentz indices.

Pc(A(k1, µ);N(k2, ν);Vα;Vβ)

=
ie2g2

2Λ2 ((gµαgνβ + gναgµβ)k1.k2

+gµν(k2βk1α + k1βk2α) − k2µk1αgνβ − k2βk1νgµα

− k2αk1νgµβ − k2µk1βgνα) (2.6)
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For the WWZγ with no WWγγ equivalent, i.e. the
last three structures in (2.2), three more structures are
needed

P1(A(k1, µ);Z(k2, ν);W+(k+, α);W−(k−, β))

=
iegZg2

Λ2 ((k1.k+gµα − k+µk1α)gνβ

+ (k1.k−gµβ − k−µk1β)gνα) (2.7)

P2(A(k1, µ);Z(k2, ν);W+(k+, α);W−(k−, β))

=
iegZg2

2Λ2 ((k1.k+ + k1.k−)gµνgαβ

− (k1αk+β + k1βk−α)gµν

−(k+µ + k−µ)k1νgαβ

+ (k+βgµα + k−αgµβ)k1ν) (2.8)

P3(A(k1, µ);Z(k2, ν);W+(k+, α);W−(k−, β))

=
iegZg2

2Λ2 (k1.k+gµβgνα

+ k1.k−gµαgνβ + (k+ν − k−ν)k1βgµα

−(k+ν − k−ν)k1αgµβ

− k+µk1βgνα − k−µk1αgνβ) (2.9)

For the couplings of four neutral bosons, it is useful to
introduce

PZ
0,c = P0,c(g → gZ) (2.10)

then taking all particles to be incoming, the Feynman
rules are

Wγ
0,c → P0,c(A(k1, µ);A(k2, ν);W+(α);W−(β))

WZ
0,c → P0,c(A(k1, µ);Z(k2, ν);W+(α);W−(β))

WZ
1,2,3 → P1,2,3(A(k1, µ);Z(k2, ν);W+(k+α);W−(k−β))

Zγ
0,c → PZ

0,c(A(k1, µ);A(k2, ν);Z(α);Z(β))

ZZ
0,c → PZ

0,c(A(k, µ);Z(k1, ν);Z(k2ρ);Z(k3λ))

+ ((k1, ν) ↔ (k2, ρ)) + ((k1, ν) ↔ (k3, λ))
(2.11)

2.2 Embedding in gauge invariant SU(2)c symmetric
operators

All the above operators can be embedded in manifestly
SU(2)×U(1) gauge invariant and SU(2)c symmetric oper-
ators, 1 which are then C and P conserving. The construc-
tion has been explained at some length in [8]. For these
kind of quartic operators it is more appropriate to use
the chiral Lagrangian approach, which assumes no Higgs.
The leading order operators in the energy expansion re-
produce the “Higgsless” standard model. Introducing our

1 Strictly speaking, SU(2)c custodial symmetry is valid in
the limit g′ → 0.

notations, as concerns the purely bosonic sector, the SU(2)
kinetic term that gives the standard tree-level gauge self-
couplings is

LGauge = −1
2

[Tr(W µνW µν) + Tr(BµνBµν)] (2.12)

where the SU(2) gauge fields are W µ = W i
µτ i, while

the hypercharge field is denoted by Bµ = τ3Bµ. The nor-
malisation for the Pauli matrices is Tr(τ iτ j) = 2δij . We
define the field strength as, W µν

W µν =
1
2

(
∂µW ν − ∂νW µ +

i

2
g[W µ,W ν ]

)

=
τ i

2
(
∂µW i

ν − ∂νW i
µ − gεijkW j

µW k
ν

)
(2.13)

The Goldstone bosons, ωi, within the built-in SU(2)
symmetry are assembled in a matrix Σ

Σ = exp(
iωiτ i

v
) ; v = 246 GeV and (2.14)

DµΣ = ∂µΣ +
i

2
(gW µΣ − g′BµΣτ3) ; g′ = e/cW

This leads to the gauge invariant mass term for the W
and Z

LM =
v2

4
Tr(DµΣ†DµΣ) ≡ −v2

4
Tr (V µV µ) ;

V µ = (DµΣ)Σ† ; MW =
gv

2
(2.15)

Incidentally, in the unitary gauge, V µ corresponds to
the triplet of the massive gauge bosons W±, Z. Note also
that at the next-to-leading order in the chiral Lagrangian
approach there are genuine quartic couplings, however
they only involve the massive vector bosons, WWWW,
WWZZ, ZZZZ. These quartic couplings can not, unfor-
tunately, be studied at LEP2. They are described, in the
SU(2)c limit,

LNLO =
L1

16π2 (Tr(V µV µ))2

+
L2

16π2 (Tr(V µV ν))2 (2.16)

Photonic quartic operators appear first as next-to-
next-to-leading operators. Even by requiring SU(2)c, C
and P conservation there are quite a few quartic photonic
operators. We list them below and show the contribution
of each to the quartic Lorentz structures of interest, de-
scribed earlier in (2.1)–(2.4). The . . . represent possible
4W, 4Z, WWZZ as well as Goldstones vertices. The kj

i
parameterise the strength of the anomalous coupling. By
exploiting properties of the trace of unitary 2×2 matrices,
other possible combinations of operators can be expressed
as combinations of the operators given below.

kw
0

Λ2 g2 Tr(W µνW µν)Tr(V αV α) (2.17)
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→ kw
0 ( Zγ

0 +
cW

sW
ZZ

0 + Wγ
0 +

cW

sW
WZ

0 + . . .

kw
c

Λ2 g2 Tr(W µνW µα)Tr(V νV α) (2.18)

→ kw
c ( Zγ

c +
cW

sW
ZZ

c + Wγ
c +

cW

sW
WZ

c + . . .

kw
1

Λ2 g2 Tr(W µνV α)Tr(W µνV α) (2.19)

→ kw
1 ( Zγ

0 +
cW

sW
ZZ

0 + WZ
1 + . . .

kw
2

Λ2 g2 Tr(W µνV ν)Tr(W µαV α) (2.20)

→ kw
2 ( Zγ

c +
cW

sW
ZZ

c + WZ
2 + . . .

kw
3

Λ2 g2 Tr(W µνV α)Tr(W µαV ν) (2.21)

→ kw
3 ( Zγ

c +
cW

sW
ZZ

c + WZ
3 + . . .

kb
0

Λ2 g′2Tr(BµνBµν)Tr(V αV α) (2.22)

→ kb
0 ( Zγ

0 − sW

cW
ZZ

0 + Wγ
0 − sW

cW
WZ

0 + . . .

kb
c

Λ2 g′2Tr(BµνBµα)Tr(V νV α) (2.23)

→ kb
c ( Zγ

c − sW

cW
ZZ

c + Wγ
c − sW

cW
WZ

c + . . .

kb
1

Λ2 g′2Tr(BµνV α)Tr(BµνV α) (2.24)

→ kb
1 ( Zγ

0 − sW

cW
ZZ

0 + . . .

kb
2

Λ2 g′2Tr(BµνV ν)Tr(BµαV α) (2.25)

→ kb
2 ( Zγ

c − sW

cW
ZZ

c + . . .

and

km
0

Λ2 gg′Tr(W µνBµν)Tr(V αV α) (2.26)

→ km
0 ( Zγ

0 + cZW ZZ
0 + Wγ

0 + cZW WZ
0 + . . .

km
c

Λ2 gg′Tr(W µνBµα)Tr(V νV α) (2.27)

→ km
c ( Zγ

c + cZW ZZ
c + Wγ

c + cZW WZ
c + . . .

km
1

Λ2 gg′Tr(W µνV α)Tr(BµνV α) (2.28)

→ km
1 ( Zγ

0 + cZW ZZ
0 +

1
2
WZ

1 + . . .

km
2

Λ2 gg′Tr(W µνV ν)Tr(BµαV α) (2.29)

→ km
2 ( Zγ

c + cZW ZZ
c +

1
2
WZ

2 + . . .

km
3

Λ2 gg′Tr(W µνV α)Tr(BµαV ν) (2.30)

→ km
3 ( Zγ

c + cZW ZZ
c +

1
2
WZ

3 + . . .

with

cZW ≡ cotg2θW =
c2
W − s2

W

2cW sW

There are a few observations that one can make. First,
this construction shows that the number of gauge invari-
ant operators exceeds the number of Lorentz structures,
(2.1)–(2.4), which may be probed by the three processes,
e+e− → W+W−γ, ZZγ, Zγγ. Note that the kw,b,m

1,2,3 do
not contribute to γγ → W+W− and therefore have no
connection to the operators a0,c that were introduced in
[1,3]. In fact kb

1,2 does not even contribute to e+e− →
W+W−γ . Note also that a limit on kw

1,2,3 from the pro-
cess e+e− → W+W−γ can be directly translated as a
limit on km

1,2,3/2.
We see that contrary to what is presented in [7,6],

the fact that we have used a manifestly gauge invari-
ant and SU(2)c symmetric approach shows that opera-
tors which contribute to WWγγ, kw,b,m

0,c , do in general
induce a WWZγ vertex. The unique WWZγ coupling in
[7,6], is not only CP violating but has no WWγγ coun-
terpart. Our general approach leads to some interesting
possibilities, like the fact that the same gauge invariant
operators can be probed both through γγ → WW and
through e+e− → W+W−Z production. In [3] only the
structures γγV V , V = W, Z, were considered in order to
compare with limits extracted from the laser mode of the
LC [1]. Therefore strictly speaking the analysis in [3] as-
sumes a relation between the ki such that the WWZγ

(and also the ZZZγ) vanishes. With kw,b,m
1,2,3 = 0, the gen-

eral condition for the vanishing of the WWZγ and ZZZγ
vertices is 2kw

0,c + km
0,c = 2 sin2 θW (kb

0,c + kw
0,c + km

0,c), with
kb
0,c + kw

0,c + km
0,c 6= 0, so that one does not also make

the V V γγ vanish. One very simple implementation of this
condition is to have, all ki = 0 apart from kw

0,c and kb
0,c

with the constraint

kw
0,c = kγγ

0,c s2
W

kb
0,c = kγγ

0,c c2
W

(2.31)

we then end up with only two independent parameters
controlling WWγγ like in the analysis in [1]. With the
constraint on the vanishing of WWZγ, we can make con-
tact with the original operators introduced in [1,3]. We
then have

a0,c = 4g2(kw
0,c + kb

0,c + km
0,c) = 4g2kγγ

0,c (2.32)

On the other hand we can arrange the operators such
that the SU(2)c γγV V couplings vanish so that effectively
a0,c = 0, but not the quartic WWZγ. For instance with
all ki = 0 but kb

0,c, k
w
0,c, this can be achieved by having

kb
0,c = −kw

0,c.
In the case of the chiral Lagrangian and in the basis

that we have chosen all operators are seen to contribute to
e+e− → Zγγ, ZZγ. However it is easy to see that we can
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choose combinations of kj
i such that all ZZγγ and ZZZγ

vanish, in which case only e+e− → W+W−γ will provide
a test on the quartic photonic anomalous couplings. For
example taking km

2 = −km
3 , with all other parameters set

to zero, only leaves the WWZγ vertex. Also because all
the operators map on only two distinct ZZγγ Lorentz
structures, e+e− → Zγγ can not discriminate between
the various operators.

The reason that there can not be a dim-4 (in the U-
gauge) operator with photons is U(1) gauge invariance
as stated in [3]. Whether or not one imposes custodial
symmetry as argued in [7] is not an issue once gauge in-
variance is required. The authors of [6,7] consider another
operator which contributes to WWZγ but not to WWγγ.
Though that operator can be made SU(2)c invariant it ex-
plicitly breaks CP (see Appendix) , and therefore we do
not consider it here nor do we consider any of the quartic
couplings that violate other discrete symmetries.

3 Linear approach to embedding
the photonic quartic couplings

As shown repeatedly, see for instance [8,12], any operator
can be made gauge invariant even in the linear approach
with the presence of a Higgs. What changes is the hier-
archy in the couplings. For instance the equivalent of the
structures k0,c are

L0 =
1
Λ4 (DµΦ)(DµΦ)† × {

g′2Qb
0BαβBαβ

+g2Qw
0 W i

αβW iαβ + gg′Qm
0 W 3

αβBαβ
}

(3.1)

and

Lc =
1
Λ4

1
2

{
(DµΦ)(DνΦ)† + h.c.

} ×{
g′2Qb

cBαµBαν

+g2Qw
c W i

αµW iαν + gg′Qm
c W 3

αµBαν
}

(3.2)

Written in terms of the fundamental fields of the SM
the above operators lead to quartic couplings but also to
vertices with up to 8 legs! All the operators contribute
to γγWW, γγZZ, γZWW, γZZZ, ZZWW, ZZZZ, while
Qw

0,c contributes also to WWWW .
When studying the quartic anomalous couplings, we

can make the following equivalence

Qj
i

Λ2 = −1
2

g2

M2
W

kj
i ; i = 0, c (3.3)

However the main difference is that in the linear ap-
proach à la SM , the operators are dimension 8 operators.
Therefore to be consistent one should also list operators
of the form F 4

µν which lead to 4γ. This shows once more
that quartic operators are more likely in the event that
there is no Higgs. This observation has already been made
for the leading order WWWW, WWZZ, ZZZZ operators
[8]. The equivalent operators corresponding to kw,b,m

1,2,3 can
also be easily written within the linear approach, but we
refrain from doing so.

4 Analysis

The computation of the different cross sections have been
checked at different levels by comparing the outputs of a
hand calculation implemented in the program used in [3]
against those of two automatic programs for the genera-
tion of Feynman diagrams and calculations of cross sec-
tions: GRACE [13] and CompHEP [14]. The former enables
the computation of the polarised cross sections. Moreover,
with CompHEP all the new operators, even in their explicit
SU(2) × U(1) forms, have been implemented at the La-
grangian level through an interface with LANHEP [15]. The
latter, given the Lagrangian, automatically generates all
the Feynman rules and vertices in a format which is read
directly by CompHEP, therefore one can say that the checks
have been performed even at the level of the Feynman
rules, thanks to LANHEP [15].

In all our calculations we have taken: MZ = 91.18 GeV,
MW = 80.41 GeV, sin2 θW = 1−M2

W /M2
Z and α(MZ)−1 =

128.07. However the electromagnetic coupling involving
any external photon is set to α = 1/137.035. When stating
limits on the anomalous couplings we will take Λ = MW ,
all limits can be trivially rescaled for any other choice of
Λ. All our analysis is based on the total WWγ and ZZγ
cross section allowing for all decay products of the W and
Z. We have not considered the added effect of any anoma-
lous tri-linear coupling, as already stressed the latter are
much better probed in e+e− → W+W−. In an experi-
mental setting, the signature to consider is the one with
4-fermions and an energetic photon. There are then other
contributions, which depend on the 4-f final state, which
are not mediated through the diagrams that contribute to
WWγ with both W decaying. The full 4-fermion +γ con-
tributions have been thoroughly studied very recently [16].
These background contributions, not going through the
resonant WWγ contribution, are less important at LEP2
energies [16]. Moreover invariant mass cuts such that the
4-fermions reconstruct a W pair and are central (to reduce
“single W” production), should drastically suppress these
background contributions.

Already at this stage we can guess the main charac-
teristics of the distributions. The use of the field tensor
for the photon means that the anomalous terms lead en-
ergetic photons which will be preferentially produced in
the central region, contrary to the SM photons which are
essentially radiative bremsstrahlung photons. For LEP2
we confine our analysis to the ultimate LEP2 energy of
200 GeV and assume a luminosity of 150 pb−1. For higher
energies to illustrate how drastic the improvement is, we
take

√
s = 500 GeV and L = 500 fb−1.

4.1 e+e− → W +W −γ at LEP2

Our cuts on the photon energy, Eγ , and its angle with the
beam, θγ , are such that Eγ > 5 GeV and 200 < θγ <
1600. The SM cross section is then .417 pb. With the
design luminosity of 150 pb−1 this amounts to about 60
events, before any efficiency or selection factor is included.
Figure 1 shows the dependence of the total cross section,
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Fig. 1a–d. Dependence of the e+e− → W+W −γ cross section at
√

s = 200 GeV on the anomalous parameters a k0, b a0

with the constraint (2.31) c kc and d kw
1,2,3. For the cuts on the photon refer to the text. The horizontal line indicates the 3σ

increase of the cross section. Λ has been set to MW

at
√

s = 200 GeV, on the parameters ki. As discussed
in the previous section, kb

1,2 do not contribute to e+e− →
W+W−γ , moreover the limits one extracts from kw

1,2,3 can
be directly translated to km

1,2,3 (there is only a factor 2 to
apply between the limits) since both only contribute to the
WWZγ coupling. On the other hand in our classification,
this is not true for the kw,b,m

0,c since each gives a different
weight to the WWZγ coupling compared to the WWγγ
and therefore we show all of the k0,c dependencies. As

an illustration we also show a model with the constraints
(2.31) where only the anomalous WWγγ coupling survives
and hence is amenable to a description in terms of a0.
One notices that the ki

0 (including a0) interfere very little
with the SM compared to the other couplings. As we
will see, this explains why two values of ki, i 6= 0 which
give the same cross section can give markedly different
distributions. From these figures with the simple cuts that
we have assumed, a 3σ measurement of the cross section
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Fig. 2a,b. 2σ and 3σ contours from e+e− → W+W −γ at
√

s = 200 GeV in km
0 − kw

2 and the kb
0 − kw

c planes

allows to set the following individual limits:

−1.35 10−2 GeV−2 <
kb
0

Λ2 < 1.30 10−2 GeV−2

−0.78 10−2 GeV−2 <
kw
0

Λ2 < 0.73 10−2 GeV−2

−1.20 10−2 GeV−2 <
km
0

Λ2 < 1.14 10−2 GeV−2

−3.70 10−2 GeV−2 <
kb

c

Λ2 < 2.50 10−2 GeV−2

−2.69 10−2 GeV−2 <
kw

c

Λ2 < 1.13 10−2 GeV−2

−4.14 10−2 GeV−2 <
km

c

Λ2 < 1.77 10−2 GeV−2

−1.44 10−2 GeV−2 <
kw
1

Λ2 ,
km
1

2Λ2 < 2.73 10−2 GeV−2

−3.10 10−2 GeV−2 <
kw
2

Λ2 ,
km
2

2Λ2 < 3.20 10−2 GeV−2

−2.82 10−2 GeV−2 <
kw
3

Λ2 ,
km
3

2Λ2 < 5.28 10−2 GeV−2

−2.48 10−2 GeV−2 <
a0

Λ2 < 2.39 10−2 GeV−2

↔ −1.59 10−2 GeV−2 <
kγγ
0

Λ2 < 1.49 10−2 GeV−2 (4.1)

We have also considered correlations for some specific
combinations of couplings. As an illustration we show the
correlations in the km

0 − kw
2 and the kb

0 − kw
c planes, see

Fig. 2. In each instance all the other couplings are set to
zero.

We now turn to the distributions. As explained above
we expect the distribution in the photon energy to be

most revealing. This is borne out by our analysis where
we do find that these couplings lead to energetic pho-
tons. To compare the various couplings we have chosen
all ki such that they all give a 3σ increase in the e+e− →
W+W−γ cross section at

√
s = 200 GeV with L

= 150 fb−1. First, we note that all ki
0 give the same dis-

tribution. This is easily understood since we have found
that these couplings interfered very little with the SM
contribution and also because they all have the same
Lorentz structure2. However this is not the case for the
other couplings. For this class of operators (kj

i 6= kj
0), we

can, on the basis of the photon distribution discriminate,
between the two signs of the couplings of a same operator
(an effect of the interference with the SM ) beside being
able, in general, to differentiate between different opera-
tors, see Fig 3. Another interesting distribution to look at
is the pT of the W, see Fig 4.

4.2 e+e− → Zγγ at LEP2

We take the same cuts on both photons as previously for
e+e− → W+W−γ . We then have a cross section which
is sensibly the same as the one for e+e− → W+W−γ :
.416 pb. As explained above we basically are probing only
two parameters ki

0,1 and kj
c,2,3. We have chosen to show kb

0

and kb
c dependencies in Fig. 5. In Zγγ, the k0 couplings

2 If one had polarised beams one could exploit the fact that
their WWZγ (mediated through a Z) and WWγγ (mediated
through a photon) components are different to discriminate
between them.
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Fig. 3a,b. Distribution in the energy of the photon in e+e− → W+W −γ due to the anomalous couplings kb
0 and kb

c as compared
to the tree-level SM . We have taken ki values that lead to a 3σ increase of the cross section as explained in the text. The ±
are the positive and negative values given by (4.1)

Fig. 4a,b. As in Fig. 3 but for the pT of one of the W ’s



G. Bélanger et al.: Bosonic quartic couplings at LEP2 291

Fig. 5. Dependence of the e+e− → Zγγ cross section at
√

s =
200 GeV on the anomalous parameters k0,c with Λ = MW . For
the cuts on the photon refer to the text

interfere more with the SM contributions than in e+e− →
W+W−γ .

For the 3σ deviations we extract

−0.95 10−2 GeV−2 <
kb
0, k

w
0 , km

0 , kb
1, k

w
1 , km

1

Λ2

< 1.87 10−2 GeV−2

−2.68 10−2 GeV−2 <
kb

c, k
w
c , km

c , kb
2, k

w
2 , km

2 , kw
3 , km

3

Λ2

< 3.07 10−2 GeV−2

−1.48 10−2 GeV−2 <
a0

Λ2 < 3.01 10−2 GeV−2 (4.2)

We now get limits on all couplings including kb
1,2 which

were not probed in e+e− → W+W−γ . What is more in-
teresting is that e+e− → Zγγ sets slightly better limits
on kw,m

2,3 . For the other couplings, combining both reac-
tions improves the limits set by each process.

Once again the most typical distribution is that of the
least energetic photon, as we can see from Fig. 6. Here
again, given enough statistics it might be possible to dis-
entangle between the two Lorentz structures.

4.3 Improvement at high energy

All these couplings will be much better probed as the en-
ergy increases. We have found that a linear collider run-
ning at 500 GeV will improve these limits by as much as
three orders of magnitude, especially for the k0 couplings,
see Fig. 7. To extract the 3σ limits we have assumed the
same cuts as those at LEP2, we have only concentrated

on the use of the WWγ channel where we find the cross
section to be 202.6 fb. Choosing one operator from each
of the three sets, (k0, kc, k1), and assuming a total inte-
grated luminosity of 500 fb−1, one will have the following
constraints

−2.0 10−5 GeV−2 <
kw
0

Λ2 < 0.6 10−5 GeV−2

−8.1 10−5 GeV−2 <
km

c

Λ2 < −5.0 10−5 GeV−2 and

−2.0 10−5 GeV−2 <
kw

c

Λ2 < 1.2 10−5 GeV−2

−9.0 10−5 GeV−2 <
kw
2

Λ2 < 15.0 10−5 GeV−2 (4.3)

We have also analysed how the sensitivity on the above
limits changes if one increased the cut on the photon en-
ergy from 5 GeV to 20 GeV. The limits hardly change.

Note that we can in principle also use other channels,
like for instance e+e− → WWZ. However this channel is
more conducive to tests on the WWZZ couplings which
appear at a lower order in the energy expansion in the
context of the chiral Lagrangian and are thus more likely.

5 Remarks and conclusion

We have given an extensive list of C and P conserving
quartic bosonic operators involving a photon and which
may be probed at LEP2. Previous studies have considered
only two operators beside a third which we have shown to
be CP violating. We have shown how these structures can
be embedded in a fully SU(2) × U(1) and SU(2)c glob-
ally invariant operators. We have derived limits on these
couplings from e+e− → W+W−γ and e+e− → Zγγ
at LEP2. When constraining the different structures so
that we reproduce the contrived models considered by the
OPAL collaboration [17] and in [7], our limits are consis-
tent with theirs. We should however add a note of warn-
ing. The natural size of these couplings, kj

i , should be of
order unity for Λ ∼ 4πv ∼ 3TeV. Another comment is
worth making. Our results show that at LEP2, for most
couplings, the effect of interference is negligible and the
limits are mainly derived from the quadratic dependence
of the cross section on the anomalous parameters. This
would mean that inclusion of higher order operators may
not be negligible. Viewed this way the limits one will ex-
tract from LEP2 are not very meaningful and are much
worse compared to the limits on the tri-linear couplings
derived from LEP2. However the next generation of lin-
ear colliders can quite usefully constraint these operators,
since we can gain as much as three-orders of magnitude
compared to LEP2. Some order of magnitude on these
non-renormalisable operators can also be set from their
contributions to the low-energy precision measurements.
However a study within a fully gauge invariant framework
has not been done. A partial investigation [6] taking into
account only two operators, with the restriction that no
WWZγ and ZZZγ ensue, has been attempted, however
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Fig. 6a,b. Distribution in the least energetic photon in e+e− → γγZ due to the anomalous couplings kb
0 and kb

c. We have
taken ki values that lead to a 3σ increase of the cross section as explained in the text. The ± are the positive and negative
values given by (4.2)

Fig. 7. As in Fig. 1 but with
√

s = 500 GeV. Here both the
±3σ deviation with L = 500 fb−1 are shown

the approach taken in [6] leads to these operators not de-
coupling in loop contributions and therefore cast a shadow
on limits derived this way. For a discussion of how to treat
the loop effects of the anomalous operator on low energy
observables one should refer to [12,18].

A Appendix

In [7] a WWZγ operator not listed in (2.2) is also con-
sidered. Though SU(2)c symmetric, it is explicitly CP
violating. The authors [7] take

Ln = − e2

16Λ2 anεijkW i
µαW j

ν W k αFµν (A.1)

where the W i are the elements of W triplet before
mixing. Note that this Lagrangian differs from that of [6]
by an overall i factor which would make it non hermitian.
Expanding in the physical fields one would get:

Ln = −i
e2

16cW Λ2 an

{
F ν

µ

[
Zµα(W+

α W−
ν − W−

α W+
ν )

+ W+ µα(W−
ν Zα − ZνW−

α )
−W− µα(W+

ν Zα − ZνW+
α )

]
(A.2)

Note now that properly going to the physical basis, the
Lagrangian expressed in terms of the charged fields has an
i as required by hermiticity. In the passage from (A.1) to
(A.2), a i is missing in [7]. As explicit in (A.2) this i is cru-
cial for hermiticity. On the other hand it is quite explicit
also that this coupling violates C and CP . Even if one had
considered this coupling in computing e+e− → W+W−γ,
without any (transversely) polarized beams or the study
of specific correlations in the decay products, this cou-
plings does not interfere with the SM amplitudes. There-
fore one only has a quadratic sensitivity on this anomalous
coupling It is also interesting to write this Lagrangian in
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a gauge invariant manner. For instance in the chiral La-
grangian approach we may write:

Ln = i
aCP
4

Λ2 g′ gTr (τ3Bµν) Tr (W µα [V ν ,V α]) (A.3)

When written in terms of the physical fields this leads
to the quartic couplings

Ln → i

2
e g2 gZ

aCP
4

Λ2

{
F ν

µ

[
Zµα(W+

α W−
ν − W−

α W+
ν )

+ W+ µα(W−
ν Zα − ZνW−

α )
− W− µα(W+

ν Zα − ZνW+
α )

]
− sW

cW
Z ν

µ

[
W+ µα(W−

ν Zα − ZνW−
α )

− W− µα(W+
ν Zα − ZνW+

α )
]}

(A.4)

we would then have with the correct i,

an = − 8
sW

g2aCP
4 (A.5)

Note that this vertex when written in a gauge invariant
manner also contributes to a WWZZ vertex.
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